Stanford Junior and Infant School Calculation Policy

This policy has been adapted from the White Rose
Calculation Policy, based on a Mastery approach.
The focus is on deepening conceptual understanding.
Problems are modelled with concrete materials, then using pictorial representations of the materials, leading to use of abstract symbols.

The indications of Year groups are for guidance only; teachers use their professional judgement as to whether consolidation of a certain concept is required before moving to the next.

	$\begin{aligned} & N \\ & \frac{1}{\pi} \\ & \text { U } \\ & \hline \end{aligned}$	Adding 3 single digits Combine to make 10 if possible; or bridge 10, then add the third digit.	Children regroup and draw representations	Combine to make 10 if possible; or bridge 10, then add the third digit. $\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$								
		Using known facts	Children draw representations of $\mathrm{H}, \mathrm{T}, \mathrm{U}$ $\begin{aligned} & \because+\because=\therefore \\ &\\|\\|+\\|\\|=\\| \\|\\| \\| \\ & \square \square+\square \square=\text { 日a } \\ & \square \square \square \square \end{aligned}$	$\begin{aligned} & \text { I know } 3+3=6 \\ & \text { so } 30+30=60 \\ & \text { and } 300+300=600 \end{aligned}$								
		TU + U Use dienes to continue to develop understanding of place value e.g. $41+8$ Initially not crossing 10. Then moving on to regrouping (exchanging) when crossing 10 e.g. $26+5$	Children to represent the dienes e.g. lines for tens and dots for units.									
		TU + TU Use dienes to continue to develop understanding of partitioning and place value e.g. $36+25$ Number lines may also be used. 6 1	Children to represent the base 10 in a place value chart.	Look for ways to make 10. $\begin{array}{rlr} 36+25 & =30+20+5+5+1 \\ & =50+10+1 \\ & =61 \end{array}$ Formal methods: $\begin{array}{r} 36 \\ +\begin{array}{r} 35 \\ +11 \end{array} \\ \begin{array}{r} 50 \\ \hline 61 \end{array} \\ \hline+25 \\ \hline \end{array}$								

+	$\begin{aligned} & 0 \\ & \frac{1}{\pi} \\ & 1 \\ & \hline \end{aligned}$	Add several numbers of increasing complexity Using place value counters as Year 5 Adding money and measures, including decimals with different numbers of decimal places	As Year 5	$\begin{array}{r} 23 \cdot 361 \\ 9 \cdot 080 \\ 59 \cdot 770 \\ +\quad 1 \cdot 300 \\ \hline 93 \cdot 511 \\ 21 \cdot 2 \end{array}$	Use zero as a place holder

Conceptual variation; different ways to ask children to solve $21+34$

 and in year 4, there are 34 children.
How many children in total?
$21+34=55$. Prove it

$$
21+34=
$$

$-\quad=21+34$
21
+34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

$10 \mathbf{s}$	1s
0	
0	$?$
$?$	5

		Concrete	Pictor	Abstract
		Taking away ones Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. இ』O $x \times x \mid x$	$4-3=\quad \square=4-3$
	$\stackrel{\text { 㐫 }}{\text { ¢ }}$	Counting back Using number lines or number tracks, children start with 6 and count back 2 $6-2=4$		Children to represent the calculation on a jumps. Begin to use an empty number line.
		Finding the difference Using cubes, Numicon or Cuisenaire rods, other objects can also be used. Calculate the difference between 8 and 5 .	Children to draw the objects they have used o calculate	Find the difference between 8 and 5 . $8-5$, the difference is \qquad Same difference: $9-6=8-5$ Word problems: Hannah has 12 sweets, her sister has 5 How many more does Hannah have?

	$\begin{aligned} & \text { H } \\ & \vdots \\ & \underset{\sim}{1} \\ & \hline \end{aligned}$	Making 10 using ten frames $14-5$	Children present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} 14-5=9 \quad 14-5 & =14-4-1 \\ & =10-1 \\ & =9 \end{aligned}$ How many do we take off first to get to 10 ? How many are left to take off?
	$\begin{aligned} & N \\ & \frac{1}{0} \\ & \text { U } \end{aligned}$	TU-U Column method using dienes. 48-7 Initially not crossing 10. Then moving on to regrouping (exchanging) when crossing 10 e.g. 62-5 Number lines may also be used.	Children to represent the base 10 pictorially, crossing out as they take away. 57	Column method or children could count back 7.
		TU-TU Column method using base 10 and having to exchange, using dienes. $41-26$ Number lines may also be used.	Represent the base 10 pictorially, remembering to show the exchange.	Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

	$\begin{aligned} & 1 \\ & \vdots \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	Subtracting numbers with at least 4 digits Extending place value chart from Year 4 Introducing decimal subtraction with money and measures calculations.	Represent the place value counters as above; remembering to show what has been exchanged.	Line up the decimal point; use zero for place holder
	$$	Subtracting increasingly complex numbers and decimals		7.9 8.00 -4.13Use zero as a place holder 8.87

Conceptual variation; different ways to ask children to solve 391-186

391	
186	?

Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?	$-=391-186$	Missing digit calculations.
Calculate the difference between 391 and 186.	$-\frac{-186}{}$	What is 186 less than 391?

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{4}{*}{} \& \multirow{4}{*}{\[
\begin{aligned}
\& \stackrel{\rightharpoonup}{\bar{\omega}} \\
\& \stackrel{y}{0}
\end{aligned}
\]} \& Concrete \& Pictorial \& Abstract \\
\hline \& \& \begin{tabular}{l}
Repeated grouping/repeated addition \\
\(4 \times 3\) \\
\(4+4+4\) \\
There are 4 in 3 equal groups.
\end{tabular} \& \begin{tabular}{l}
Children to represent the practical resources in a picture and use a bar model. \(88 \quad 88 \quad 88\) \\
?
\end{tabular} \& \[
\] \\
\hline \& \& \begin{tabular}{l}
Doubling \\
Use a variety of resources including cubes and Numicon \\
Double 4: \(+0=\) \(\square\)
\end{tabular} \& Children draw pictures of doubles

\square
\square
\square
\square
\square \& $2 \times 4=8$

\hline \& \& Number lines to show repeated groups4×3
\square

\qquad \& | Represent this pictorially alongside a number line e.g. |
| :--- |
| $1000010000_{8}^{10000_{12}}$ | \& | Abstract number line showing three jumps of four. |
| :--- |
| $4 \times 3=12$ |

\hline
\end{tabular}

	$\begin{aligned} & N \\ & \text { No } \\ & \text { U } \\ & \end{aligned}$	Use arrays to illustrate commutativity Counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. $\begin{array}{ll} 00 & 00000 \\ 00 & 00000 \\ 00 & \\ 00 & \\ 00 & \end{array}$	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \text { or } 10=2 \times 5 \\ & 5 \times 2=10 \text { or } 10=5 \times 2 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
E		Doubling Use Dienes and place value counters Double 26:	Children draw representations of materials	Doubling 2-digit numbers: Partition and double each part, recombine
		Counting in Multiples of 2, 3, 4, 5, 10 Groups of objects/fingers used for skip counting	Number lines, counting sticks, bar models 3 3 3 3	Count in 2 s etc verbally Write sequences of multiples $\begin{aligned} & 0,2,4,6,8 . . \\ & 0,5,10,15, \ldots \end{aligned}$

Conceptual variation; different ways to ask children to solve 6×23

Fivision with Arrays
Link division with multiplication by creating an
array and finding the related number
sentences

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.
$1 2 \longdiv { 2 5 }$
$\frac{24}{1}$

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.

$$
\begin{array}{r}
12 \frac{021}{2544} \\
\frac{24}{14} \\
\frac{12}{2}
\end{array}
$$

After exchanging the 2 tens, we

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

What is the calculation? What is the answer?

$5 \longdiv { 6 1 5 }$

$615 \div 5=$
$=615 \div 5$

